Physics – Condensed Matter – Soft Condensed Matter
Scientific paper
2001-12-07
J. Non-Cryst. Solids 336, 218 (2004)
Physics
Condensed Matter
Soft Condensed Matter
Accepted for J. Non-Cryst. Solids
Scientific paper
A kinetic Monte Carlo (KMC) method is used to study the structural properties and dynamics of a supercooled binary Lennard-Jones liquid around the glass transition temperature. This technique permits us to explore the potential energy surface and barrier distributions without suffering the exponential slowing down at low temperature that affects molecular dynamics simulations. In agreement with previous studies we observe a distinct change in behaviour around $T=0.45$, close to the dynamical transition temperature $T_c$ of mode coupling theory (MCT). Below this temperature the number of different local minima visited by the system for the same number of KMC steps decreases by more than an order of magnitude. The mean number of atoms involved in each jump between local minima and the average distance they move also decreases significantly, and new features appear in the partial structure factor. Above $T~0.45$ the probability distribution for the magnitude of the atomic displacement per KMC step exhibits an exponential decay, which is only weakly temperature dependent.
Hernandez-Rojas Javier
Wales David J.
No associations
LandOfFree
Supercooled Lennard-Jones Liquids and Glasses: a Kinetic Monte Carlo Approach does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Supercooled Lennard-Jones Liquids and Glasses: a Kinetic Monte Carlo Approach, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Supercooled Lennard-Jones Liquids and Glasses: a Kinetic Monte Carlo Approach will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-325954