Physics – Condensed Matter – Superconductivity
Scientific paper
2009-03-12
Phys. Rev. B 80, 064506 (2009)
Physics
Condensed Matter
Superconductivity
Scientific paper
FeSe with the PbO structure is a key member of the family of new high-$T_c$ iron pnictide and chalcogenide superconductors, as while it possesses the basic layered structural motif of edge-sharing distorted FeSe$_4$ tetrahedra, it lacks interleaved ion spacers or charge-reservoir layers. We find that application of hydrostatic pressure first rapidly increases $T_c$ which attains a broad maximum of 37 K at $\sim$7 GPa (this is one of the highest $T_c$ ever reported for a binary solid) before decreasing to 6 K upon further compression to $\sim$14 GPa. Complementary synchrotron X-ray diffraction at 16 K was used to measure the low-temperature isothermal compressibility of $\alpha$-FeSe, revealing an extremely soft solid with a bulk modulus, $K_0$ = 30.7(1.1) GPa and strong bonding anisotropy between inter- and intra-layer directions that transforms to the more densely packed $\beta$-polymorph above $\sim$9 GPa. The non-monotonic $T_c$($P$) behavior of FeSe coincides with drastic anomalies in the pressure evolution of the interlayer spacing, pointing to the key role of this structural feature in modulating the electronic properties.
Kagayama Tomoko
Margadonna Serena
Mizuguchi Yoshikazu
Nakagawa Takao
Ohishi Yasuo
No associations
LandOfFree
Pressure evolution of low-temperature crystal structure and bonding of 37 K $T_c$ FeSe superconductor does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Pressure evolution of low-temperature crystal structure and bonding of 37 K $T_c$ FeSe superconductor, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Pressure evolution of low-temperature crystal structure and bonding of 37 K $T_c$ FeSe superconductor will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-36766