Physics – Condensed Matter – Materials Science
Scientific paper
2012-01-19
Physics
Condensed Matter
Materials Science
accepted to PRB
Scientific paper
The anisotropic physical properties of single crystals of orthorhombic PtSn4 are reported for magnetic fields up to 140 kOe, applied parallel and perpendicular to the crystallographic b-axis. The magnetic susceptibility has an approximately temperature independent behavior and reveals an anisotropy between ac-plane and b-axis. Clear de Haas-van Alphen oscillations in fields as low as 5 kOe and at temperatures as high as 30 K were detected in magnetization isotherms. The thermoelectric power and resistivity of PtSn4 show the strong temperature and magnetic field dependencies. A change of the thermoelectric power at H = 140 kOe is observed as high as ~ 50 mu-V/K. Single crystals of PtSn4 exhibit very large transverse magnetoresistance of ~ 5x10^5% for the ac-plane and of ~ 1.4x10^5% for the b-axis resistivity at 1.8 K and 140 kOe, as well as pronounced Shubnikov-de Haas oscillations. The magnetoresistance of PtSn4 appears to obey Kohler's rule in the temperature and field range measured. The Hall resistivity shows a linear temperature dependence at high temperatures followed by a sign reversal around 25 K which is consistent with thermoelectric power measurements. The observed quantum oscillations and band structure calculations indicate that PtSn4 has three dimensional Fermi surfaces.
Bud'ko Sergey L.
Canfield Paul. C.
Ko Hyunjin
Miller Gordon J.
Mun Eundeok
No associations
LandOfFree
Magnetic Field Effects on Transport Properties of PtSn4 does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Magnetic Field Effects on Transport Properties of PtSn4, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Magnetic Field Effects on Transport Properties of PtSn4 will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-254464