Physics – Condensed Matter – Materials Science
Scientific paper
2008-07-06
Physics
Condensed Matter
Materials Science
11 pages, 4 figures
Scientific paper
10.1088/1367-2630/11/2/023008
The concept of low-voltage depletion and accumulation of electron charge in semiconductors, utilized in field-effect transistors (FETs), is one of the cornerstones of current information processing technologies. Spintronics which is based on manipulating the collective state of electron spins in a ferromagnet provides complementary technologies for reading magnetic bits or for the solid-state memories. The integration of these two distinct areas of microelectronics in one physical element, with a potentially major impact on the power consumption and scalability of future devices, requires to find efficient means for controlling magnetization electrically. Current induced magnetization switching phenomena represent a promising step towards this goal, however, they relay on relatively large current densities. The direct approach of controlling the magnetization by low-voltage charge depletion effects is seemingly unfeasible as the two worlds of semiconductors and metal ferromagnets are separated by many orders of magnitude in their typical carrier concentrations. Here we demonstrate that this concept is viable by reporting persistent magnetization switchings induced by short electrical pulses of a few volts in an all-semiconductor, ferromagnetic p-n junction.
Ferguson Andrew J.
Irvine Andrew C.
Jungwirth Tomas
Novak Vaclav
Ogawa Sachio
No associations
LandOfFree
Low voltage control of ferromagnetism in a semiconductor p-n junction does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Low voltage control of ferromagnetism in a semiconductor p-n junction, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Low voltage control of ferromagnetism in a semiconductor p-n junction will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-48860