Physics – Condensed Matter – Strongly Correlated Electrons
Scientific paper
2007-10-15
Phys. Rev. B 77 094439 (2008)
Physics
Condensed Matter
Strongly Correlated Electrons
16 pages, 11 figures included
Scientific paper
10.1103/PhysRevB.77.094439
We report a high-resolution neutron diffraction study of the crystal and magnetic structure of the orbitally-degenerate frustrated metallic magnet AgNiO2. At high temperatures the structure is hexagonal with a single crystallographic Ni site, low-spin Ni3+ with spin-1/2 and two-fold orbital degeneracy, arranged in an antiferromagnetic triangular lattice with frustrated spin and orbital order. A structural transition occurs upon cooling below 365 K to a tripled hexagonal unit cell containing three crystallographically-distinct Ni sites with expanded and contracted NiO6 octahedra, naturally explained by spontaneous charge order on the Ni triangular layers. No Jahn-Teller distortions occur, suggesting that charge order occurs in order to lift the orbital degeneracy. Symmetry analysis of the inferred Ni charge order pattern and the observed oxygen displacement pattern suggests that the transition could be mediated by charge fluctuations at the Ni sites coupled to a soft oxygen optical phonon breathing mode. At low temperatures the electron-rich Ni sublattice (assigned to a valence close to Ni2+ with S = 1) orders magnetically into a collinear stripe structure of ferromagnetic rows ordered antiferromagnetically in the triangular planes. We discuss the stability of this uncommon spin order pattern in the context of an easy-axis triangular antiferromagnet with additional weak second neighbor interactions and interlayer couplings.
Coldea Radu
Ibberson R. M.
Jansen Malte
Koza Michael Marek
Radaelli Paolo G.
No associations
LandOfFree
Charge disproportionation and collinear magnetic order in the frustrated triangular antiferromagnet AgNiO2 does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Charge disproportionation and collinear magnetic order in the frustrated triangular antiferromagnet AgNiO2, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Charge disproportionation and collinear magnetic order in the frustrated triangular antiferromagnet AgNiO2 will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-126923