Physics – Condensed Matter – Superconductivity
Scientific paper
2011-06-21
Physics
Condensed Matter
Superconductivity
4pages, 4figures, accepted for publication in Phys. Rev. Lett
Scientific paper
We report 75As-nuclear quadrupole resonance (NQR) studies on (Ca_4Al_2O_{6-y})(Fe_2As_2) with Tc=27K, which unravel unique normal-state properties and point to unconventional nodeless superconductivity (SC). Measurement of nuclear-spin-relaxation rate 1/T_1 has revealed a significant development of two dimensional (2D) antiferromagnetic (AFM) spin fluctuations down to Tc, in association with the fact that FeAs layers with the smallest As-Fe-As bond angle are well separated by thick perovskite-type blocking layer. Below Tc, the temperature dependence of 1/T_1 without any trace of the coherence peak is well accounted for by an s(+-)-wave multiple gaps model. From the fact that Tc=27K in this compound is comparable to Tc=28K in the optimally-doped LaFeAsO_{1-y} in which AFM spin fluctuations are not dominant, we remark that AFM spin fluctuations are not a unique factor for enhancing Tc among existing Fe-based superconductors, but a condition for optimizing SC should be addressed from the lattice structure point of view.
Eisaki Hiroshi
Iyo Akira
Kinouchi Hiroaki
Kitaoka Yoshio
Mukuda Hidekazu
No associations
LandOfFree
Antiferromagnetic Spin Fluctuations and Unconventional Nodeless Superconductivity in an Iron-based New Superconductor (Ca_4Al_2O_{6-y})(Fe_2As_2):75As-NQR Study does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Antiferromagnetic Spin Fluctuations and Unconventional Nodeless Superconductivity in an Iron-based New Superconductor (Ca_4Al_2O_{6-y})(Fe_2As_2):75As-NQR Study, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Antiferromagnetic Spin Fluctuations and Unconventional Nodeless Superconductivity in an Iron-based New Superconductor (Ca_4Al_2O_{6-y})(Fe_2As_2):75As-NQR Study will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-177900