Physics – Condensed Matter – Strongly Correlated Electrons
Scientific paper
2004-04-14
Phys. Rev. B 70, 165102 (2004)
Physics
Condensed Matter
Strongly Correlated Electrons
16 pages, 17 figures; new version with extended summary; several typos corrected
Scientific paper
10.1103/PhysRevB.70.165102
The Anderson model of a twofold spin degenerate impurity level in the limit of infinite Coulomb repulsion, $U \to \infty$, coupled to one and two degenerate conduction bands or channels, is considered in pseudo-particle representation. We extend the Conserving T-Matrix Approximation (CTMA), a general diagrammatic approximation scheme based on a fully renormalized computation of two-particle vertex functions in the spin and in the charge channel, to the calculation of thermodynamic and spectral properties. In the single-channel case, the CTMA yields in the Kondo regime a temperature independent Pauli spin susceptibility for temperatures below the Kondo temperature $T_K$ and down to the lowest temperatures considered, reproducing the exact spin screening in the Fermi liquid state. The impurity spectral density appears to remain non-singular down to the lowest temperatures, in agreement with Fermi liquid behavior. However, the unitarity sum rule, which is crucial for an impurity solver like the CTMA to be applicable within Dynamical Mean Field Theories for strongly correlated lattice models, is overestimated at the lowest temperatures. We argue that this shortcoming may be due to numerical imprecision and discuss an appropriate scheme for its correction. In the two-channel case, the spectral density calculated within CTMA exhibit qualitatively the correct non-Fermi liquid behavior at low temperatures, i.e. a powerlaw singularity.
Kirchner Stefan
Kroha Johann
Wölfle Peter
No associations
LandOfFree
Dynamical Properties of the Anderson Impurity Model within a Diagrammatic Pseudoparticle Approach does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Dynamical Properties of the Anderson Impurity Model within a Diagrammatic Pseudoparticle Approach, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Dynamical Properties of the Anderson Impurity Model within a Diagrammatic Pseudoparticle Approach will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-9557