Precise Determination of Phase Diagram for Two-Dimensional Hubbard Model with Filling- and Bandwidth-Control Mott Transitions: Grand-Canonical Path-Integral Renormalization Group Approach

Physics – Condensed Matter – Strongly Correlated Electrons

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

17 pages, 14 figures

Scientific paper

10.1143/JPSJ.73.1251

A new numerical algorithm for interacting fermion systems to treat the grand-canonical ensemble is proposed and examined by extending the path-integral renormalization group method. To treat the grand-canonical ensemble, the particle-hole transformation is applied to the Hamiltonian and basis states. In the interaction-term projection, the Stratonovich-Hubbard transformation which hybridizes up and down spin electrons is introduced. By using this method, the phase diagram of the two-dimensional Hubbard model with next-nearest-neighbor transfer is accurately determined by treating the filling-control (FC) and bandwidth-control (BC) Mott transitions on the same ground. A V-shaped Mott insulating phase is obtained in the plane of the chemical potential and the Coulomb interaction, where the transitions at the corner (BC) and the edges (FC) show contrasted characters with large critical fluctuations near the edges coexisting with the first-order transition at the corner. This contrasted behavior is shown to be consistent with the V-shape structure of the phase boundary because of a general relation, in which the slope of the metal-insulator transition line in the phase diagram is expressed by thermodynamic quantities. The V-shaped opening of the Mott gap is favorably compared with the experimental results of the transition metal oxides.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Precise Determination of Phase Diagram for Two-Dimensional Hubbard Model with Filling- and Bandwidth-Control Mott Transitions: Grand-Canonical Path-Integral Renormalization Group Approach does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Precise Determination of Phase Diagram for Two-Dimensional Hubbard Model with Filling- and Bandwidth-Control Mott Transitions: Grand-Canonical Path-Integral Renormalization Group Approach, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Precise Determination of Phase Diagram for Two-Dimensional Hubbard Model with Filling- and Bandwidth-Control Mott Transitions: Grand-Canonical Path-Integral Renormalization Group Approach will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-717638

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.