Higher correlations, universal distributions and finite size scaling in the field theory of depinning

Physics – Condensed Matter

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

15 pages revtex4. See also preceding article cond-mat/0301464

Scientific paper

10.1103/PhysRevE.68.046118

Recently we constructed a renormalizable field theory up to two loops for the quasi-static depinning of elastic manifolds in a disordered environment. Here we explore further properties of the theory. We show how higher correlation functions of the displacement field can be computed. Drastic simplifications occur, unveiling much simpler diagrammatic rules than anticipated. This is applied to the universal scaled width-distribution. The expansion in d=4-epsilon predicts that the scaled distribution coincides to the lowest orders with the one for a Gaussian theory with propagator G(q)=1/q^(d+2 \zeta), zeta being the roughness exponent. The deviations from this Gaussian result are small and involve higher correlation functions, which are computed here for different boundary conditions. Other universal quantities are defined and evaluated: We perform a general analysis of the stability of the fixed point. We find that the correction-to-scaling exponent is omega=-epsilon and not -epsilon/3 as used in the analysis of some simulations. A more detailed study of the upper critical dimension is given, where the roughness of interfaces grows as a power of a logarithm instead of a pure power.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Higher correlations, universal distributions and finite size scaling in the field theory of depinning does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Higher correlations, universal distributions and finite size scaling in the field theory of depinning, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Higher correlations, universal distributions and finite size scaling in the field theory of depinning will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-709468

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.