Physics – Condensed Matter – Strongly Correlated Electrons
Scientific paper
2001-12-13
Phys. Rev. B 66, 024431 (2002).
Physics
Condensed Matter
Strongly Correlated Electrons
24 pages, clarification of several points
Scientific paper
10.1103/PhysRevB.66.024431
Motivated by recent scanning tunneling microscope (STM) experiments on cobalt clusters adsorbed on single wall metallic nanotubes [Odom {\em et al.}, Science {\bf 290}, 1549 (2000)], we study theoretically the size dependence of STM spectra and spin-flip scattering of electrons from finite size ferromagnetic clusters adsorbed on metallic surfaces. We study two models of nanometer size ferromagnets: (i) An itinerant model with delocalized s, p and d electrons and (ii) a local moment model with both localized d-level spins and delocalized cluster electrons. The effective exchange coupling between the spin of the cluster and the conduction electrons of the metallic substrate depends on the specific details of the single particle density of states on the cluster. The calculated Kondo coupling is inversely proportional to the total spin of the ferromagnetic cluster in both models and thus the Kondo temperature is rapidly suppressed as the size of the cluster increases. Mesoscopic fluctuations in the charging energies and magnetization of nanoclusters can lead to large fluctuations in the Kondo temperatures and a very asymmetric voltage dependence of the STM spectra. We compare our results to the experiments.
Fiete Gregory A.
Halperin Bertrand I.
Oreg Yuval
Zarand Gergely
No associations
LandOfFree
Kondo effect and STM spectra through ferromagnetic nanoclusters does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Kondo effect and STM spectra through ferromagnetic nanoclusters, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Kondo effect and STM spectra through ferromagnetic nanoclusters will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-663324