Physics – Condensed Matter – Materials Science
Scientific paper
2007-07-05
Journal of Applied Physics 103, 023503 (2008
Physics
Condensed Matter
Materials Science
17 pages, 10 figures
Scientific paper
We review the electronic and magnetic properties of the quinternary full Heusler alloys of the type Co$_2$[Cr$_{1-x}$Mn$_x$][Al$_{1-y}$Si$_y$] employing three different approaches : (i) the coherent potential approximation (CPA), (ii) the virtual crystal approximation (VCA), and (iii) supercell calculations (SC). All three methods give similar results and the local environment manifested itself only for small details of the density of states. All alloys under study are shown to be half-metals and their total spin moments follow the so-called Slater-Pauling behavior of the ideal half-metallic systems. We especially concentrate on the properties related to the minority-spin band-gap. We present the possibility to engineer the properties of these alloys by changing the relative concentrations of the low-valent transition metal and $sp$ atoms in a continuous way. Our results show that for realistic applications, ideal are the compounds rich in Si and Cr since they combine large energy gaps (around 0.6 eV), robust half-metallicity with respect to defects (the Fermi level is located near the middle of the gap) and high values of the majority-spin density of states around the Fermi level which are needed for large values of the perfectly spin-polarized current in spintronic devices like spin-valves or magnetic tunnel junctions.
Galanakis Iosif
Ozdogan K.
Sasioglu Ersoy
No associations
LandOfFree
Engineering the electronic, magnetic and gap-related properties of the quinternary half-metallic Heusler alloys does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Engineering the electronic, magnetic and gap-related properties of the quinternary half-metallic Heusler alloys, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Engineering the electronic, magnetic and gap-related properties of the quinternary half-metallic Heusler alloys will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-568783