Decoherence-protected quantum gates for a hybrid solid-state spin register

Physics – Condensed Matter – Mesoscale and Nanoscale Physics

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

This is original submitted version of the paper. The revised and finalized version is in print, and is subjected to the embarg

Scientific paper

Protecting the dynamics of coupled quantum systems from decoherence by the environment is a key challenge for solid-state quantum information processing. An idle qubit can be efficiently insulated from the outside world via dynamical decoupling, as has recently been demonstrated for individual solid-state qubits. However, protection of qubit coherence during a multi-qubit gate poses a non-trivial problem: in general the decoupling disrupts the inter-qubit dynamics, and hence conflicts with gate operation. This problem is particularly salient for hybrid systems, wherein different types of qubits evolve and decohere at vastly different rates. Here we present the integration of dynamical decoupling into quantum gates for a paradigmatic hybrid system, the electron-nuclear spin register. Our design harnesses the internal resonance in the coupled-spin system to resolve the conflict between gate operation and decoupling. We experimentally demonstrate these gates on a two-qubit register in diamond operating at room temperature. Quantum tomography reveals that the qubits involved in the gate operation are protected as accurately as idle qubits. We further illustrate the power of our design by executing Grover's quantum search algorithm, achieving fidelities above 90% even though the execution time exceeds the electron spin dephasing time by two orders of magnitude. Our results directly enable decoherence-protected interface gates between different types of promising solid-state qubits. Ultimately, quantum gates with integrated decoupling may enable reaching the accuracy threshold for fault-tolerant quantum information processing with solid-state devices.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Decoherence-protected quantum gates for a hybrid solid-state spin register does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Decoherence-protected quantum gates for a hybrid solid-state spin register, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Decoherence-protected quantum gates for a hybrid solid-state spin register will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-565439

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.