Nonequilibrium Phase Transition for a Heavy Particle in a Granular Fluid

Physics – Condensed Matter – Statistical Mechanics

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

28 pages, 12 figures included

Scientific paper

10.1103/PhysRevE.64.051305

It is shown that the homogeneous cooling state (HCS) for a heavy impurity particle in a granular fluid supports two distinct phases. The order parameter $\phi$ is the mean square velocity of the impurity particle relative to that of a fluid particle, and the control parameter $\xi$ is the fluid cooling rate relative to the impurity collision rate. For $\xi<1$ there is a ``normal'' phase for which $\phi$ scales as the fluid/impurity mass ratio, just as for a system with elastic collisions. For $\xi>1$ an ``ordered'' phase occurs in which $\phi$ is finite even for vanishingly small mass ratio, representing an extreme violation of energy equipartition. The phenomenon can be described in terms of a Landau-like free energy for a second order phase transition. The dynamics leading to the HCS is studied in detail using an asymptotic analysis of the Enskog-Lorentz kinetic equation near each phase and the critical domain. Critical slowing is observed with a divergent relaxation time at the critical point. The stationary velocity distributions are determined in each case, showing a crossover from Maxwellian in the normal phase to an exponential quartic function of the velocity that is sharply peaked about the non-zero $\phi$ for the ordered phase. It is shown that the diffusion coefficient in the normal phase diverges at the critical point and remains so in the ordered phase. This is interpreted as a transition from diffusive to ballistic dynamics between the normal and ordered phases.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Nonequilibrium Phase Transition for a Heavy Particle in a Granular Fluid does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Nonequilibrium Phase Transition for a Heavy Particle in a Granular Fluid, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Nonequilibrium Phase Transition for a Heavy Particle in a Granular Fluid will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-560465

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.