Physics – Condensed Matter – Superconductivity
Scientific paper
2012-01-13
J. Phys. Soc. Jpn. 81 (2012) 011008
Physics
Condensed Matter
Superconductivity
20 pages, 25 figures, Special topics "Recent Developments in Superconductivity" in J. Phys. Soc. Jpn., Published December 26,
Scientific paper
10.1143/JPSJ.81.011008
High-temperature superconductivity (HTSC) in copper oxides emerges on a layered CuO2 plane when an antiferromagnetic Mott insulator is doped with mobile hole carriers. We review extensive studies of multilayered copper oxides by site-selective nuclear magnetic resonance (NMR), which have uncovered the intrinsic phase diagram of antiferromagnetism (AFM) and HTSC for a disorder-free CuO2 plane with hole carriers. We present our experimental findings such as the existence of the AFM metallic state in doped Mott insulators, the uniformly mixed phase of AFM and HTSC, and the emergence of d-wave SC with a maximum Tc just outside a critical carrier density, at which the AFM moment on a CuO2 plane disappears. These results can be accounted for by the Mott physics based on the t-J model. The superexchange interaction J_in among spins plays a vital role as a glue for Cooper pairs or mobile spin-singlet pairs, in contrast to the phonon-mediated attractive interaction among electrons established in the Bardeen-Cooper-Schrieffer (BCS) theory. We remark that the attractive interaction for raising the $T_c$ of HTSC up to temperatures as high as 160 K is the large J_in (~0.12 eV), which binds electrons of opposite spins to be on neighboring sites, and that there are no bosonic glues. It is the Coulomb repulsive interaction U(> 6 eV) among Cu-3d electrons that plays a central role in the physics behind high-Tc phenomena. A new paradigm of the SC mechanism opens to strongly correlated electron matter.
Iyo Akira
Kitaoka Yoshio
Mukuda Hidekazu
Shimizu Seiya
No associations
LandOfFree
High-Tc Superconductivity and Antiferromagnetism in Multilayered Copper Oxides - A New Paradigm of Superconducting Mechanism - does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with High-Tc Superconductivity and Antiferromagnetism in Multilayered Copper Oxides - A New Paradigm of Superconducting Mechanism -, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and High-Tc Superconductivity and Antiferromagnetism in Multilayered Copper Oxides - A New Paradigm of Superconducting Mechanism - will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-468282