Physics – Condensed Matter – Statistical Mechanics
Scientific paper
2006-06-13
Phys. Rev. B74(2006)144201
Physics
Condensed Matter
Statistical Mechanics
16 pages, 10 figures
Scientific paper
10.1103/PhysRevB.74.144201
In order to study the influence of quenched disorder on second-order phase transitions, high-temperature series expansions of the \sus and the free energy are obtained for the quenched bond-diluted Ising model in $d = 3$--5 dimensions. They are analysed using different extrapolation methods tailored to the expected singularity behaviours. In $d = 4$ and 5 dimensions we confirm that the critical behaviour is governed by the pure fixed point up to dilutions near the geometric bond percolation threshold. The existence and form of logarithmic corrections for the pure Ising model in $d = 4$ is confirmed and our results for the critical behaviour of the diluted system are in agreement with the type of singularity predicted by renormalization group considerations. In three dimensions we find large crossover effects between the pure Ising, percolation and random fixed point. We estimate the critical exponent of the \sus to be $\gamma =1.305(5)$ at the random fixed point.
Hellmund Meik
Janke Wolfhard
No associations
LandOfFree
High-temperature series for the bond-diluted Ising model in 3, 4 and 5 dimensions does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with High-temperature series for the bond-diluted Ising model in 3, 4 and 5 dimensions, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and High-temperature series for the bond-diluted Ising model in 3, 4 and 5 dimensions will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-45849