On the Anti-Wishart distribution

Physics – Condensed Matter – Statistical Mechanics

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

to appear in Physica A

Scientific paper

We provide the probability distribution function of matrix elements each of which is the inner product of two vectors. The vectors we are considering here are independently distributed but not necessarily Gaussian variables. When the number of components M of each vector is greater than the number of vectors N, one has a $N\times N$ symmetric matrix. When $M\ge N$ and the components of each vector are independent Gaussian variables, the distribution function of the $N(N+1)/2$ matrix elements was obtained by Wishart in 1928. When N > M, what we called the ``Anti-Wishart'' case, the matrix elements are no longer completely independent because the true degrees of freedom becomes smaller than the number of matrix elements. Due to this singular nature, analytical derivation of the probability distribution function is much more involved than the corresponding Wishart case. For a class of general random vectors, we obtain the analytical distribution function in a closed form, which is a product of various factors and delta function constraints, composed of various determinants. The distribution function of the matrix element for the $M\ge N$ case with the same class of random vectors is also obtained as a by-product. Our result is closely related to and should be valuable for the study of random magnet problem and information redundancy problem.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

On the Anti-Wishart distribution does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with On the Anti-Wishart distribution, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and On the Anti-Wishart distribution will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-457411

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.