Survival Probabilities of History-Dependent Random Walks

Physics – Condensed Matter – Statistical Mechanics

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

3 pages, 2 figures

Scientific paper

10.1103/PhysRevE.72.046144

We analyze the dynamics of random walks with long-term memory (binary chains with long-range correlations) in the presence of an absorbing boundary. An analytically solvable model is presented, in which a dynamical phase-transition occurs when the correlation strength parameter \mu reaches a critical value \mu_c. For strong positive correlations, \mu > \mu_c, the survival probability is asymptotically finite, whereas for \mu < \mu_c it decays as a power-law in time (chain length).

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Survival Probabilities of History-Dependent Random Walks does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Survival Probabilities of History-Dependent Random Walks, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Survival Probabilities of History-Dependent Random Walks will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-434724

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.