Topological kinematic constraints: quantum dislocations and the glide principle

Physics – Condensed Matter – Strongly Correlated Electrons

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

14 pages, 4 figures

Scientific paper

10.1080/14786430600636328

Topological defects play an important role in physics of elastic media and liquid crystals. Their kinematics is determined by constraints of topological origin. An example is the glide motion of dislocations which has been extensively studied by metallurgists. In a recent theoretical study dealing with quantum dualities associated with the quantum melting of solids it was argued that these kinematic constraints play a central role in defining the quantum field theories of relevance to the description of quantum liquid crystalline states of the nematic type. This forms the motivation to analyze more thoroughly the climb constraints underlying the glide motions. In the setting of continuum field theory the climb constraint is equivalent to the condition that the density of constituent particles is vanishing and we derive a mathematical definition of this constraint which has a universal status. This makes possible to study the kinematics of dislocations in arbitrary space-time dimensions and as an example we analyze the restricted climb associated with edge dislocations in 3+1D. Very generally, it can be shown that the climb constraint is equivalent to the condition that dislocations do not communicate with compressional stresses at long distances. However, the formalism makes possible to address the full non-linear theory of relevance to short distance behaviors where violations of the constraint become possible.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Topological kinematic constraints: quantum dislocations and the glide principle does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Topological kinematic constraints: quantum dislocations and the glide principle, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Topological kinematic constraints: quantum dislocations and the glide principle will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-404710

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.