Non-equilibrium behavior at a liquid-gas critical point

Physics – Condensed Matter – Statistical Mechanics

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

17 pages, revtex, one figure and EPJB style files included

Scientific paper

Second-order phase transitions in a non-equilibrium liquid-gas model with reversible mode couplings, i.e., model H for binary-fluid critical dynamics, are studied using dynamic field theory and the renormalization group. The system is driven out of equilibrium either by considering different values for the noise strengths in the Langevin equations describing the evolution of the dynamic variables (effectively placing these at different temperatures), or more generally by allowing for anisotropic noise strengths, i.e., by constraining the dynamics to be at different temperatures in d_par- and d_perp-dimensional subspaces, respectively. In the first, case, we find one infrared-stable and one unstable renormalization group fixed point. At the stable fixed point, detailed balance is dynamically restored, with the two noise strengths becoming asymptotically equal. The ensuing critical behavior is that of the standard equilibrium model H. At the novel unstable fixed point, the temperature ratio for the dynamic variables is renormalized to infinity, resulting in an effective decoupling between the two modes. We compute the critical exponents at this new fixed point to one-loop order. For model H with spatially anisotropic noise, we observe a critical softening only in the d_perp-dimensional sector in wave vector space with lower noise temperature. The ensuing effective two-temperature model H does not have any stable fixed point in any physical dimension, at least to one-loop order. We obtain formal expressions for the novel critical exponents in a double expansion about the upper critical dimension d_c = 4 - d_par and with respect to d_par, i.e., about the equilibrium theory.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Non-equilibrium behavior at a liquid-gas critical point does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Non-equilibrium behavior at a liquid-gas critical point, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Non-equilibrium behavior at a liquid-gas critical point will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-387167

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.