Physics – Condensed Matter – Statistical Mechanics
Scientific paper
1998-08-14
Physics
Condensed Matter
Statistical Mechanics
18 pages in REVTeX with 14 eps figures included, Submitted to Physical Review E
Scientific paper
10.1103/PhysRevE.60.3949
We study a generic but simple non-integrable quantum {\em many-body} system of {\em locally} interacting particles, namely a kicked $t-V$ model of spinless fermions on 1-dim lattice (equivalent to a kicked Heisenberg XX-Z chain of 1/2 spins). Statistical properties of dynamics (quantum ergodicity and quantum mixing) and the nature of quantum transport in {\em thermodynamic limit} are considered as the kick parameters (which control the degree of non-integrability) are varied. We find and demonstrate {\em ballistic} transport and non-ergodic, non-mixing dynamics (implying infinite conductivity at all temperatures) in the {\em integrable} regime of zero or very small kick parameters, and more generally and important, also in {\em non-integrable} regime of {\em intermediate} values of kicked parameters, whereas only for sufficiently large kick parameters we recover quantum ergodicity and mixing implying normal (diffusive) transport. We propose an order parameter (charge stiffness $D$) which controls the phase transition from non-mixing/non-ergodic dynamics (ordered phase, $D>0$) to mixing/ergodic dynamics (disordered phase, D=0) in the thermodynamic limit. Furthermore, we find {\em exponential decay of time-correlation function} in the regime of mixing dynamics. The results are obtained consistently within three different numerical and analytical approaches: (i) time evolution of a finite system and direct computation of time correlation functions, (ii) full diagonalization of finite systems and statistical analysis of stationary data, and (iii) algebraic construction of quantum invariants of motion of an infinite system, in particular the time averaged observables.
No associations
LandOfFree
Ergodic properties of a generic non-integrable quantum many-body system in thermodynamic limit does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Ergodic properties of a generic non-integrable quantum many-body system in thermodynamic limit, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Ergodic properties of a generic non-integrable quantum many-body system in thermodynamic limit will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-384294