Physics – Condensed Matter – Mesoscale and Nanoscale Physics
Scientific paper
2006-11-21
Phys. Rev. B 75, 205413 (2007)
Physics
Condensed Matter
Mesoscale and Nanoscale Physics
24 pages, 17 figures
Scientific paper
10.1103/PhysRevB.75.205413
We describe a first-principles method for calculating electronic structure, vibrational modes and frequencies, electron-phonon couplings, and inelastic electron transport properties of an atomic-scale device bridging two metallic contacts under nonequilibrium conditions. The method extends the density-functional codes SIESTA and TranSIESTA that use atomic basis sets. The inelastic conductance characteristics are calculated using the nonequilibrium Green's function formalism, and the electron-phonon interaction is addressed with perturbation theory up to the level of the self-consistent Born approximation. While these calculations often are computationally demanding, we show how they can be approximated by a simple and efficient lowest order expansion. Our method also addresses effects of energy dissipation and local heating of the junction via detailed calculations of the power flow. We demonstrate the developed procedures by considering inelastic transport through atomic gold wires of various lengths, thereby extending the results presented in [Frederiksen et al., Phys. Rev. Lett. 93, 256601 (2004)]. To illustrate that the method applies more generally to molecular devices, we also calculate the inelastic current through different hydrocarbon molecules between gold electrodes. Both for the wires and the molecules our theory is in quantitative agreement with experiments, and characterizes the system-specific mode selectivity and local heating.
Brandbyge Mads
Frederiksen Thomas
Jauho Antti-Pekka
Paulsson Magnus
No associations
LandOfFree
Inelastic transport theory from first-principles: methodology and applications for nanoscale devices does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Inelastic transport theory from first-principles: methodology and applications for nanoscale devices, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Inelastic transport theory from first-principles: methodology and applications for nanoscale devices will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-338460