First-principle derivation of static avalanche-size distribution

Physics – Condensed Matter – Disordered Systems and Neural Networks

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

33 pages, 24 figures

Scientific paper

We study the energy minimization problem for an elastic interface in a random potential plus a quadratic well. As the position of the well is varied, the ground state undergoes jumps, called shocks or static avalanches. We introduce an efficient and systematic method to compute the statistics of avalanche sizes and manifold displacements. The tree-level calculation, i.e. mean-field limit, is obtained by solving a saddle-point equation. Graphically, it can be interpreted as a the sum of all tree graphs. The 1-loop corrections are computed using results from the functional renormalization group. At the upper critical dimension the shock statistics is described by the Brownian Force model (BFM), the static version of the so-called ABBM model in the non-equilibrium context of depinning. This model can itself be treated exactly in any dimension and its shock statistics is that of a Levy process. Contact is made with classical results in probability theory on the Burgers equation with Brownian initial conditions. In particular we obtain a functional extension of an evolution equation introduced by Carraro and Duchon, which recursively constructs the tree diagrams in the field theory.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

First-principle derivation of static avalanche-size distribution does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with First-principle derivation of static avalanche-size distribution, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and First-principle derivation of static avalanche-size distribution will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-217942

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.