Low-energy (< 10 meV) feature in the nodal electron self-energy and strong temperature dependence of the Fermi velocity in Bi(2)Sr(2)CaCu(2)O(8+delta)

Physics – Condensed Matter – Superconductivity

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

5 pages, 3 figures, citation added, submitted to Phys. Rev. Lett

Scientific paper

10.1103/PhysRevLett.105.046402

Using low-photon energy angle-resolved photoemission (ARPES), we study the low-energy dispersion along the nodal (pi, pi) direction in Bi(2)Sr(2)CaCu(2)O(8+delta) (Bi2212) as a function of temperature. Less than 10 meV below the Fermi energy, the high-resolution data reveals a novel "kink"-like feature in the real part of the electron self-energy that is distinct from the larger well-known kink roughly 70 meV below E_F. This new kink is strongest below the superconducting critical temperature and weakens substantially as the temperature is raised. A corollary of this finding is that the Fermi velocity, as measured over this energy range, varies rapidly with temperature - increasing by almost 30% from 70 to 110 K.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Low-energy (< 10 meV) feature in the nodal electron self-energy and strong temperature dependence of the Fermi velocity in Bi(2)Sr(2)CaCu(2)O(8+delta) does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Low-energy (< 10 meV) feature in the nodal electron self-energy and strong temperature dependence of the Fermi velocity in Bi(2)Sr(2)CaCu(2)O(8+delta), we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Low-energy (< 10 meV) feature in the nodal electron self-energy and strong temperature dependence of the Fermi velocity in Bi(2)Sr(2)CaCu(2)O(8+delta) will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-187931

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.