Directional Locking Effects and Dynamics for Particles Driven Through a Colloidal Lattice

Physics – Condensed Matter – Soft Condensed Matter

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

12 pages, 17 postscript figures

Scientific paper

10.1103/PhysRevE.69.041405

We examine the dynamics of a single colloidal particle driven through a colloidal lattice which can distort in response to the driven particle. We find a remarkably rich variety of dynamical locking phenomena as we vary the angle of the applied drive with respect to the orientation of the colloidal lattice. When the driven colloid locks to certain lattice symmetry directions, its motion is not necessarily aligned with the drive. Applying a transverse force to the driven particle can result in either increased or decreased drag in the driving direction, depending on the angle of the drive. The dynamical locking produces anomalies in both the longitudinal and the transverse velocity vs driving force curves, including steps and regimes of negative differential resistance. As the interaction of the driven particle with the surrounding lattice increases, significant distortion or dislocations in the surrounding media occur, and as a result the directional locking is enhanced. We compare these results to those obtained for driving particles over fixed substrates, and show that a far richer variety of behaviors occurs when the underlying lattice is allowed to distort. We discuss how this system can be used for particle species segregation when the onset of different locking angles occurs at different drives for varied particle sizes. We also show that the most pronounced locking phases should be observable at temperatures up to the melting transition of the colloidal lattice.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Directional Locking Effects and Dynamics for Particles Driven Through a Colloidal Lattice does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Directional Locking Effects and Dynamics for Particles Driven Through a Colloidal Lattice, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Directional Locking Effects and Dynamics for Particles Driven Through a Colloidal Lattice will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-187598

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.