Universal aspects of non-equilibrium currents in a quantum dot

Physics – Condensed Matter – Strongly Correlated Electrons

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

35 pages, 2 figures; v2: typos corrected, introduction and conclusion enhanced; v3: more discussion, published version

Scientific paper

10.1103/PhysRevB.73.245326

We study the electric current in the non-equilibrium Kondo model at zero magnetic field, using real-time perturbation theory in the Schwinger-Keldysh formulation. We show that the perturbative coefficients to all orders have a finite limit at large switch-on time (t_0 to minus infinity), and we give a prescription for general operators to give finite coefficients in this limit. We explain how this is related to the fact that the leads play the role of thermal baths and allow relaxation to occur and the steady state to form. This proves perturbatively that a steady state is reached in the Schwinger-Keldysh formulation, and specifies which operators correspond to quantities that have a well-defined value in the steady state. Then, we show that the steady state can be described by a special type of density matrix (related to Hershfield's conjecture for the particular example of the non-equilibrium Kondo model.) In the second part of the paper we perform a renormalization-group analysis of the perturbative series. We give a general argument that strongly suggests that the perturbative series of any average in the steady state satisfies the equilibrium Callan-Symanzik equations, and show in detail how it works to one-loop order for the electric current operator inside any average. We finally compute to two loops order the average of the electric current in the steady state, and perform a renormalization-group improvement. From this, we give a universal prescription, valid in the perturbative regime, for comparing the effect of the electric current to that of the temperature on the ``Kondo cloud''.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Universal aspects of non-equilibrium currents in a quantum dot does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Universal aspects of non-equilibrium currents in a quantum dot, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Universal aspects of non-equilibrium currents in a quantum dot will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-170350

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.