Topological liquids and valence cluster states in two-dimensional SU(N) magnets

Physics – Condensed Matter – Strongly Correlated Electrons

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

26 pages, 7 figures. Very minor changes from v1. Typos corrected in v3

Scientific paper

10.1103/PhysRevB.84.174441

We study the zero temperature phase diagram of a class of two-dimensional SU(N) antiferromagnets. These models are characterized by having the same type of SU(N) spin placed at each site of the lattice, and share the property that, in general, more than two spins must be combined to form a singlet. An important motivation to study these systems is that they may be realized naturally in Mott insulators of alkaline earth atoms placed on optical lattices; indeed, such Mott insulators have already been obtained experimentally, although the temperatures are still high compared to the magnetic exchange energy. We study these antiferromagnets in a large-N limit, finding a variety of ground states. Some of the models studied here have a valence bond solid ground state, as was found in prior studies, yet we find that many others have a richer variety of ground states. Focusing on the two-dimensional square lattice, in addition to valence cluster states (which are analogous to valence bond states), we find both Abelian and non-Abelian chiral spin liquid ground states, which are magnetic counterparts of the fractional quantum Hall effect. We also find a "doubled" chiral spin liquid ground state that preserves time reversal symmetry. These results are based on a combination of rigorous lower bounds on the large-N ground state energy, and a systematic numerical ground state search. We conclude by discussing whether experimentally relevant SU(N) antiferromagnets -- away from the large-N limit -- may be chiral spin liquids.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Topological liquids and valence cluster states in two-dimensional SU(N) magnets does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Topological liquids and valence cluster states in two-dimensional SU(N) magnets, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Topological liquids and valence cluster states in two-dimensional SU(N) magnets will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-107688

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.