Work distribution and path integrals in general mean-field systems

Physics – Condensed Matter – Statistical Mechanics

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

4 pages, 2 figures; accepted for publication in Europhys. Lett

Scientific paper

10.1209/epl/i2005-10067-5

We consider a mean-field system described by a general collective variable $M$, driven out of equilibrium by the manipulation of a parameter $\mu$. Given a general dynamics compatible with its equilibrium distribution, we derive the evolution equation for the joint probability distribution function of $M$ and the work $W$ done on the system. We solve this equation by path integrals. We show how the Jarzynski equality holds identically at the path integral level and for the classical paths which dominate the expression in the thermodynamic limit. We discuss some implications of our results.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Work distribution and path integrals in general mean-field systems does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Work distribution and path integrals in general mean-field systems, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Work distribution and path integrals in general mean-field systems will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-312328

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.