Vortices in rotating optical lattices: commensurability, hysteresis, and proximity to the Mott State

Physics – Condensed Matter – Other Condensed Matter

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

21 Pages, 6 Figures ; Higher resolution versions of Figs. 1,4,5 are available upon request

Scientific paper

Quantized vortices stunningly illustrate the coherent nature of a superfluid Bose condensate of alkali atoms. Introducing an optical lattice depletes this coherence. Consequently, novel vortex physics may emerge in an experiment on a harmonically trapped gas in the presence of a rotating optical lattice. The most dramatic effects would occur in proximity to the Mott state, an interaction dominated insulator with a fixed integer number of particles per site. We model such a rotating gas, showing that the lattice-induced spatial profile of the superfluid density drives a gross rearrangement of vortices. For example, instead of the uniform vortex lattices commonly seen in experiments, we find parameters for which the vortices all sit at a fixed distance from the center of the trap, forming a ring. Similarly, they can coalesce at the center, forming a giant vortex. We find that the properties of this system are hysteretic, even far from the Mott state. We explain this hysteresis in terms of vortex pinning, commensurability between vortex density and pinning site density, and energy barriers against changing the number of vortices. Finally, we model time-of-flight expansion, demonstrating the experimental observability of our predictions.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Vortices in rotating optical lattices: commensurability, hysteresis, and proximity to the Mott State does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Vortices in rotating optical lattices: commensurability, hysteresis, and proximity to the Mott State, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Vortices in rotating optical lattices: commensurability, hysteresis, and proximity to the Mott State will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-607

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.