Physics – Condensed Matter – Mesoscale and Nanoscale Physics
Scientific paper
2010-04-06
Low Temp. Phys. 36, 902 (2010)
Physics
Condensed Matter
Mesoscale and Nanoscale Physics
10 pages, 4 figures
Scientific paper
10.1063/1.3515521
We consider a new type of cooling mechanism for a suspended nanowire acting as a weak link between two superconductive electrodes. By applying a bias voltage over the system, we show that the system can be viewed as a refrigerator for the nanomechanical vibrations, where energy is continuously transferred from the vibrational degrees of freedom to the extended quasiparticle states in the leads through the periodic modulation of the inter-Andreev level separation. The necessary coupling between the electronic and mechanical degrees of freedom responsible for this energy-transfer can be achieved both with an external magnetic or electrical field, and is shown to lead to an effective cooling of the vibrating nanowire. Using realistic parameters for a suspended nanowire in the form of a metallic carbon nanotube we analyze the evolution of the density matrix and demonstrate the possibility to cool the system down to a stationary vibron population of $\sim 0.1$. Furthermore, it is shown that the stationary occupancy of the vibrational modes of the nanowire can be directly probed from the DC current responsible for carrying away the absorbed energy from the vibrating nanowire.
Gorelik Leonid Y.
Jonson Mats
Peña-Aza Milton E.
Shekhter Robert I.
Sonne Gustav
No associations
LandOfFree
Voltage-driven superconducting weak link as a refrigerator for cooling of nanomechanical vibrations does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Voltage-driven superconducting weak link as a refrigerator for cooling of nanomechanical vibrations, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Voltage-driven superconducting weak link as a refrigerator for cooling of nanomechanical vibrations will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-57232