Physics – Condensed Matter
Scientific paper
1996-07-03
Physics
Condensed Matter
4 pages, 2 figures; submitted to Phys. Rev. Letters
Scientific paper
10.1103/PhysRevLett.77.4442
Using the time-dependent Ginzburg-Landau equations we study the propagation of planar fronts in superconductors, which would appear after a quench to zero applied magnetic field. Our numerical solutions show that the fronts propagate at a unique speed which is controlled by the amount of magnetic flux trapped in the front. For small flux the speed can be determined from the linear marginal stability hypothesis, while for large flux the speed may be calculated using matched asymptotic expansions. At a special point the order parameter and vector potential are dual, leading to an exact solution which is used as the starting point for a perturbative analysis.
Di Bartolo John S.
Dorsey Alan T.
No associations
LandOfFree
Velocity Selection for Propagating Fronts in Superconductors does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Velocity Selection for Propagating Fronts in Superconductors, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Velocity Selection for Propagating Fronts in Superconductors will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-301799