Physics – Condensed Matter – Disordered Systems and Neural Networks
Scientific paper
2003-04-21
Physics
Condensed Matter
Disordered Systems and Neural Networks
23 pages, 13 figures
Scientific paper
This paper reports empirical evidence that a neural networks model is applicable to the statistically reliable prediction of foreign exchange rates. Time series data and technical indicators such as moving average, are fed to neural nets to capture the underlying "rules" of the movement in currency exchange rates. The trained recurrent neural networks forecast the exchange rates between American Dollar and four other major currencies, Japanese Yen, Swiss Frank, British Pound and EURO. Various statistical estimates of forecast quality have been carried out. Obtained results show, that neural networks are able to give forecast with coefficient of multiple determination not worse then 0.65. Linear and nonlinear statistical data preprocessing, such as Kolmogorov-Smirnov test and Hurst exponents for each currency were calculated and analyzed.
Kondratenko V. V.
Kuperin Yu A.
No associations
LandOfFree
Using Recurrent Neural Networks To Forecasting of Forex does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Using Recurrent Neural Networks To Forecasting of Forex, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Using Recurrent Neural Networks To Forecasting of Forex will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-550914