Unzipping DNA from the condensed globule state--Effects of unraveling

Physics – Condensed Matter – Soft Condensed Matter

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

17 pages, 4 figures

Scientific paper

We study theoretically the unzipping of a double stranded DNA from a condensed globule state by an external force. At constant force, we find that the double stranded DNA unzips an at critical force Fc and the number of unzipped monomers M goes as M~(Fc-F)^{-3}, for both the homogeneous and heterogeneous double stranded DNA sequence. This is different from the case of unzipping from an extended coil state in which the number of unzipped monomers M goes as M~(Fc-F)^{-chi}, where the exponent chi is either 1 or 2 depending on whether the double stranded DNA sequence is homogeneous or heterogeneous respectively. In the case of unzipping at constant extension, we find that for a double stranded DNA with a very large number N of base pairs, the force remains almost constant as a function of the extension, before the unraveling transition, at which the force drops abruptly to zero. Right at the unraveling transition, the number of base pairs remaining in the condensed globule state is still very large and goes as N^{3/4}, in agreement with theoretical predictions of the unraveling transition of polymers stretched by an external force.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Unzipping DNA from the condensed globule state--Effects of unraveling does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Unzipping DNA from the condensed globule state--Effects of unraveling, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Unzipping DNA from the condensed globule state--Effects of unraveling will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-215243

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.