Physics – Condensed Matter – Mesoscale and Nanoscale Physics
Scientific paper
2003-10-28
Physics
Condensed Matter
Mesoscale and Nanoscale Physics
11 pages, 14 figures
Scientific paper
We show that large amplitude, coherent acoustic phonon wavepackets can be generated and detected in In$_x$Ga$_{1-x}$N/GaN epilayers and heterostructures in femtosecond pump-probe differential reflectivity experiments. The amplitude of the coherent phonon increases with increasing Indium fraction $x$ and unlike other coherent phonon oscillations, both \textit{amplitude} and \textit{period} are strong functions of the laser probe energy. The amplitude of the oscillation is substantially and almost instantaneously reduced when the wavepacket reaches a GaN-sapphire interface below the surface indicating that the phonon wavepackets are useful for imaging below the surface. A theoretical model is proposed which fits the experiments well and helps to deduce the strength of the phonon wavepackets. Our model shows that localized coherent phonon wavepackets are generated by the femtosecond pump laser in the epilayer near the surface. The wavepackets then propagate through a GaN layer changing the local index of refraction, primarily through the Franz-Keldysh effect, and as a result, modulate the reflectivity of the probe beam. Our model correctly predicts the experimental dependence on probe-wavelength as well as epilayer thickness.
Jho Y.-D.
Kim Chang Sub
Kim Dae San
Liu Rongliang
Oh Eun
No associations
LandOfFree
Ultrafast spectroscopy of propagating coherent acoustic phonons in GaN/InGaN heterostructures does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Ultrafast spectroscopy of propagating coherent acoustic phonons in GaN/InGaN heterostructures, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Ultrafast spectroscopy of propagating coherent acoustic phonons in GaN/InGaN heterostructures will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-136837