Physics – Condensed Matter – Mesoscale and Nanoscale Physics
Scientific paper
2002-10-09
Physics
Condensed Matter
Mesoscale and Nanoscale Physics
submitted to Phys. Rev. B
Scientific paper
Room temperature, wavelength non-degenerate ultrafast pump/probe measurements were performed on GaN and InGaN epilayers and an InGaN multiple quantum well structure. Carrier relaxation dynamics were investigated as a function of excitation wavelength and intensity. Spectrally-resolved sub-picosecond relaxation due to carrier redistribution and QW capture was found to depend sensitively on the wavelength of pump excitation. Moreover, for pump intensities above a threshold of 100 microJ/cm2, all samples demonstrated an additional emission feature arising from stimulated emission (SE). SE is evidenced as accelerated relaxation (< 10 ps) in the pump-probe data, fundamentally altering the re-distribution of carriers. Once SE and carrier redistribution is completed, a slower relaxation of up to 1 ns for GaN and InGaN epilayers, and 660 ps for the MQW sample, indicates carrier recombination through spontaneous emission.
Everitt Henry O.
Ozgur Umit
No associations
LandOfFree
Ultrafast carrier relaxation in GaN, In_(0.05)Ga_(0.95)N and an In_(0.05)Ga_(0.95)/In_(0.15)Ga_(0.85)N Multiple Quantum Well does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Ultrafast carrier relaxation in GaN, In_(0.05)Ga_(0.95)N and an In_(0.05)Ga_(0.95)/In_(0.15)Ga_(0.85)N Multiple Quantum Well, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Ultrafast carrier relaxation in GaN, In_(0.05)Ga_(0.95)N and an In_(0.05)Ga_(0.95)/In_(0.15)Ga_(0.85)N Multiple Quantum Well will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-204578