Physics – Condensed Matter – Materials Science
Scientific paper
2011-08-15
Phys. Rev. B 84, 235204 (2011)
Physics
Condensed Matter
Materials Science
15 pages and 14 figures
Scientific paper
10.1103/PhysRevB.84.235204
Using an empirical pseudopotential description of electron states and an adiabatic bond charge model for phonon states in bulk silicon, we theoretically investigate two-photon indirect optical injection of carriers and spins and two-color coherent control of the motion of the injected carriers and spins. For two-photon indirect carrier and spin injection, we identify the selection rules of band edge transitions, the injection in each conduction band valley, and the injection from each phonon branch at 4 K and 300 K. At 4 K, the TA phonon-assisted transitions dominate the injection at low photon energies, and the TO phonon-assisted at high photon energies. At 300 K, the former dominates at all photon energies of interest. The carrier injection shows anisotropy and linear-circular dichroism with respect to light propagation direction. For light propagating along the $<001>$ direction, the carrier injection exhibits valley anisotropy, and the injection into the $Z$ conduction band valley is larger than that into the $X/Y$ valleys. For $\sigma^-$ light propagating along the $<001>$ ($<111>$) direction, the degree of spin polarization gives a maximum value about 20% (6%) at 4 K and -10% (20%) at 300 K, and at both temperature shows abundant structure near the injection edges due to contributions from different phonon branches. Forthe two-color coherent current injection with an incident optical field composed of a fundamental frequency and its second harmonic, the response tensors of the electron (hole) charge and spin currents are calculated at 4 K and 300 K. We show the current control for three different polarization scenarios. The spectral dependence of the maximum swarm velocity shows that the direction of charge current reverses under increase in photon energy.
Cheng J. L.
Rioux Julien
Sipe John E.
No associations
LandOfFree
Two-photon Indirect Optical Injection and Two-color Coherent Control in Bulk Silicon does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Two-photon Indirect Optical Injection and Two-color Coherent Control in Bulk Silicon, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Two-photon Indirect Optical Injection and Two-color Coherent Control in Bulk Silicon will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-301751