Physics – Condensed Matter – Soft Condensed Matter
Scientific paper
2010-05-15
Physics
Condensed Matter
Soft Condensed Matter
Scientific paper
We investigate the average velocity of Brownian particles driven by a constant external force when constrained to move in two-dimensional, weakly-corrugated channels. We consider both the geometric confinement of the particles between solid walls as well as the soft confinement induced by a periodic potential. Using perturbation methods we show that the leading order correction to the marginal probability distribution of particles in the case of soft confinement is equal to that obtained in the case of geometric confinement, provided that the (configuration) integral over the cross-section of the confining potential is equal to the width of the solid channel. We then calculate the probability distribution and average velocity in the case of a sinusoidal variation in the width of the channels. The reduction on the average velocity is larger in the case of soft channels at small P\'eclet numbers and for relatively narrow channels and the opposite is true at large P\'eclet numbers and for wide channels. In the limit of large P\'eclet numbers the convergence to bulk velocity is faster in the case of soft channels. The leading order correction to the average velocity and marginal probability distribution agree well with Brownian Dynamics simulations for the two types of confinement and over a wide range of P\'eclet numbers.
Drazer German
Wang Xinli
No associations
LandOfFree
Transport of Brownian particles confined to a weakly corrugated channel does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Transport of Brownian particles confined to a weakly corrugated channel, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Transport of Brownian particles confined to a weakly corrugated channel will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-241096