Physics – Condensed Matter – Materials Science
Scientific paper
2009-01-26
Physics
Condensed Matter
Materials Science
Scientific paper
W-based granular metals have been prepared by electron beam induced deposition from the tungsten-hexacarbonyl W(CO)6 precursor. In situ electrical conductivity measurements have been performed to monitor the growth process and to investigate the behavior of the deposit under electron beam post irradiation and by exposure to air. During the first part of the growth process, the electrical conductivity grows non-linearly, independent of the electron beam parameters. This behavior is interpreted as the result of the increase of the W-particles diameter. Once the growth process is terminated, the electrical conductivity decreases with the logarithm of time, sigma ln(t). Temperature-dependent conductivity measurements of the deposits reveal that the electrical transport takes place by means of electron tunneling either between W-metal grains or between grains and trap sites in the matrix. After venting the electron microscope the electrical conductivity of the deposits shows a degradation behavior, which depends on the composition. Electron post-irradiation increases the electrical conductivity of the deposits.
Huth Michael
Porrati Fabrizio.
Sachser Roland
No associations
LandOfFree
Transient electrical conductivity of W-based electron beam induced deposits during growth, irradiation and exposure to air does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Transient electrical conductivity of W-based electron beam induced deposits during growth, irradiation and exposure to air, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Transient electrical conductivity of W-based electron beam induced deposits during growth, irradiation and exposure to air will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-371850