Physics – Condensed Matter – Materials Science
Scientific paper
2009-05-04
Physics
Condensed Matter
Materials Science
Article accepted for publication in J. Low Temp. Phys
Scientific paper
Wetting transitions have been predicted and observed to occur for various combinations of fluids and surfaces. This paper describes the origin of such transitions, for liquid films on solid surfaces, in terms of the gas-surface interaction potentials V(r), which depend on the specific adsorption system. The transitions of light inert gases and H2 molecules on alkali metal surfaces have been explored extensively and are relatively well understood in terms of the least attractive adsorption interactions in nature. Much less thoroughly investigated are wetting transitions of Hg, water, heavy inert gases and other molecular films. The basic idea is that nonwetting occurs, for energetic reasons, if the adsorption potential's well-depth D is smaller than, or comparable to, the well-depth of the adsorbate-adsorbate mutual interaction. At the wetting temperature, Tw, the transition to wetting occurs, for entropic reasons, when the liquid's surface tension is sufficiently small that the free energy cost in forming a thick film is sufficiently compensated by the fluid- surface interaction energy. Guidelines useful for exploring wetting transitions of other systems are analyzed, in terms of generic criteria involving the "simple model", which yields results in terms of gas-surface interaction parameters and thermodynamic properties of the bulk adsorbate.
Cole Milton W.
Gatica Silvina M.
No associations
LandOfFree
To wet or not to wet: that is the question does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with To wet or not to wet: that is the question, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and To wet or not to wet: that is the question will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-199959