Physics – Condensed Matter – Disordered Systems and Neural Networks
Scientific paper
2001-03-30
Physics
Condensed Matter
Disordered Systems and Neural Networks
8 pages,9 figures. Accepted PRB
Scientific paper
We compare numerical estimates from different sources for the ordering temperature $T_g$ and the critical exponents of the Ising spin glass in dimension three with binomial ($\pm J$) interactions. Corrections to finite size scaling turn out to be important especially for parameters such as the Binder cumulant. For non-equilibrium parameters it is easier to approach the large size limit and to allow for corrections to scaling. Relying principally on such data, a crossing point defines the freezing temperature $T_g$; the possibility that the ordering temperature is zero can definitively be excluded. We estimate an ordering temperature $T_g = 1.195(15)$, with associated estimates of the critical exponents for which corrections to finite size scaling are well under control. Among the parameters evaluated is the leading dynamic correction to scaling exponent $w$.
Campbell Andrew I.
Mari P. O.
No associations
LandOfFree
The ordering temperature and critical exponents of the binomial Ising spin glass in dimension three does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with The ordering temperature and critical exponents of the binomial Ising spin glass in dimension three, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and The ordering temperature and critical exponents of the binomial Ising spin glass in dimension three will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-684049