Physics – Condensed Matter – Materials Science
Scientific paper
2004-11-30
Physics
Condensed Matter
Materials Science
21 pages, 6 figures and 2 tables, submitted to JCP
Scientific paper
10.1063/1.1884999
We study a two-dimensional gas of inelastic smooth hard dimers. Since the collisions between dimers are dissipative, being characterized by a coefficient of restitution $\alpha<1$, and no external driving force is present, the energy of the system decreases in time and no stationary state is achieved. However, the resulting non equilibrium state of the system displays several interesting properties in close analogy with systems of inelastic hard spheres, whose relaxational dynamics has been thoroughly explored. We generalise to inelastic systems a recently method introduced [G.Ciccotti and G.Kalibaeva, J. Stat. Phys. {\bf 115}, 701 (2004)] to study the dynamics of rigid elastic bodies made up of different spheres hold together by rigid bonds. Each dimer consists of two hard disks of diameter $d$, whose centers are separated by a fixed distance $a$. By describing the rigid bonds by means of holonomic constraints and deriving the appropriate collision rules between dimers, we reduce the dynamics to a set of equations which can be solved by means of event driven simulation. After deriving the algorithm we study the decay of the total kinetic energy, and of the ratio between the rotational and the translational kinetic energy of inelastic dimers. We show numerically that the celebrated Haff's homogeneous cooling law $t^{-2}$, describing how the kinetic energy of an inelastic hard sphere system with constant coefficient of restitution decreases in time, holds even in the case of these non spherical particles. We fully characterize this homogeneous decay process in terms of appropriate decay constants and confirm numerically the scaling behavior of the velocity distributions.
Bettolo Marconi Umberto Marini
Ciccotti Giovanni
Costantini Giulio
Kalibaeva Galina
No associations
LandOfFree
The inelastic hard dimer gas: a non-spherical model for granular matter does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with The inelastic hard dimer gas: a non-spherical model for granular matter, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and The inelastic hard dimer gas: a non-spherical model for granular matter will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-13767