Temperature dependence of the dielectric permittivity of CaF2, BaF2 and Al2O3: application to the prediction of a temperature dependent van der Waals surface interaction exerted onto a neighbouring Cs (8P{3/2}) atom

Physics – Condensed Matter – Materials Science

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Scientific paper

10.1088/0953-8984/21/25/255902

The temperature behaviour in the range 22\degree C to 500\degree C of the dielectric permittivity in the infrared range is investigated for CaF2, BaF2 and Al2O3 through reflectivity measurements. The dielectric permittivity is retrieved by fitting reflectivity spectra with a model taking into account multiphonon contributions. The results extrapolated from the measurements are applied to predict a temperature-dependent atom-surface van der Waals interaction. We specifically consider as the atom of interest Cs (8P3/2), the most relevant virtual couplings of which, fall in the range of thermal radiation and are located in the vicinity of the reststrahlen band of fluoride materials.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Temperature dependence of the dielectric permittivity of CaF2, BaF2 and Al2O3: application to the prediction of a temperature dependent van der Waals surface interaction exerted onto a neighbouring Cs (8P{3/2}) atom does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Temperature dependence of the dielectric permittivity of CaF2, BaF2 and Al2O3: application to the prediction of a temperature dependent van der Waals surface interaction exerted onto a neighbouring Cs (8P{3/2}) atom, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Temperature dependence of the dielectric permittivity of CaF2, BaF2 and Al2O3: application to the prediction of a temperature dependent van der Waals surface interaction exerted onto a neighbouring Cs (8P{3/2}) atom will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-294697

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.