Statistics – Computation
Scientific paper
Jun 2010
adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2010jgre..11506006l&link_type=abstract
Journal of Geophysical Research, Volume 115, Issue E6, CiteID E06006
Statistics
Computation
15
Planetary Sciences: Solid Surface Planets: Meteorology (3346), Atmospheric Processes: Planetary Meteorology (5445, 5739), Atmospheric Composition And Structure: Planetary Atmospheres (5210, 5405, 5704), Atmospheric Processes: General Circulation (1223)
Scientific paper
A general circulation model (GCM) has been developed for the Venus atmosphere, from the surface up to 100 km altitude, based on the GCM developed for Earth at our laboratory. Key features of this new GCM include topography, diurnal cycle, dependence of the specific heat on temperature, and a consistent radiative transfer module based on net exchange rate matrices. This allows a consistent computation of the temperature field, in contrast to previous GCMs of Venus atmosphere that used simplified temperature forcing. The circulation is analyzed after 350 Venus days (111 Earth years). Superrotation is obtained above roughly 40 km altitude. Below, the zonal wind remains very small compared to observed values, which is a major pending question. The meridional circulation consists of equator-to-pole cells, the dominant one being located within the cloud layers. The modeled temperature structure is globally consistent with observations, though discrepancies persist in the stability of the lowest layers and equator-pole temperature contrast within the clouds (10 K in the model compared to the observed 40 K). In agreement with observational data, a convective layer is found between the base of the clouds (around 47 km) and the middle of the clouds (55-60 km altitude). The transport of angular momentum is analyzed, and comparison between the reference simulation and a simulation without diurnal cycle illustrates the role played by thermal tides in the equatorial region. Without diurnal cycle, the Gierasch-Rossow-Williams mechanism controls angular momentum transport. The diurnal tides add a significant downward transport of momentum in the equatorial region, causing low latitude momentum accumulation.
Crespin Audrey
Eymet Vincent
Forget Francois
Fournier Richard
Hourdin Fréderic
No associations
LandOfFree
Superrotation of Venus' atmosphere analyzed with a full general circulation model does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Superrotation of Venus' atmosphere analyzed with a full general circulation model, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Superrotation of Venus' atmosphere analyzed with a full general circulation model will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-1578667