Superconductivity at 15.6 K in Calcium-doped Tb_{1-x}Ca_xFeAsO: the structure requirement for achieving superconductivity in the hole-doped 1111 phase

Physics – Condensed Matter – Superconductivity

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

7 pages, 7 figures

Scientific paper

10.1209/0295-5075/89/27002

Superconductivity at about 15.6 K was achieved in Tb_{1-x}Ca_xFeAsO by partially substituting Tb^{3+} with Ca^{2+} in the nominal doping region x = 0.40 \sim 0.50. A detailed investigation was carried out in a typical sample with doping level of x = 0.44. The upper critical field of this sample was estimated to be 77 Tesla from the magnetic field dependent resistivity data. The domination of hole-like charge carriers in the low-temperature region was confirmed by Hall effect measurements. The comparison between the calcium-doped sample Pr_{1-x}Ca_xFeAsO (non-superconductive) and the Strontium-doped sample Pr_{1-x}Sr_xFeAsO (superconductive) suggests that a lager ion radius of the doped alkaline-earth element compared with that of the rare-earth element may be a necessary requirement for achieving superconductivity in the hole-doped 1111 phase.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Superconductivity at 15.6 K in Calcium-doped Tb_{1-x}Ca_xFeAsO: the structure requirement for achieving superconductivity in the hole-doped 1111 phase does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Superconductivity at 15.6 K in Calcium-doped Tb_{1-x}Ca_xFeAsO: the structure requirement for achieving superconductivity in the hole-doped 1111 phase, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Superconductivity at 15.6 K in Calcium-doped Tb_{1-x}Ca_xFeAsO: the structure requirement for achieving superconductivity in the hole-doped 1111 phase will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-590002

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.