Physics – Condensed Matter – Materials Science
Scientific paper
2010-01-04
Physics
Condensed Matter
Materials Science
24 pages, 8 figures, 1 table
Scientific paper
We describe a molecular dynamics framework for the direct calculation of the short-ranged structural forces underlying grain-boundary premelting and grain-coalescence in solidification. The method is applied in a comparative study of (i) a Sigma 9 <115> 120 degress twist and (ii) a Sigma 9 <110> {411} symmetric tilt boundary in a classical embedded-atom model of elemental Ni. Although both boundaries feature highly disordered structures near the melting point, the nature of the temperature dependence of the width of the disordered regions in these boundaries is qualitatively different. The former boundary displays behavior consistent with a logarithmically diverging premelted layer thickness as the melting temperature is approached from below, while the latter displays behavior featuring a finite grain-boundary width at the melting point. It is demonstrated that both types of behavior can be quantitatively described within a sharp-interface thermodynamic formalism involving a width-dependent interfacial free energy, referred to as the disjoining potential. The disjoining potential for boundary (i) is calculated to display a monotonic exponential dependence on width, while that of boundary (ii) features a weak attractive minimum. The results of this work are discussed in relation to recent simulation and theoretical studies of the thermodynamic forces underlying grain-boundary premelting.
Asta Mark
Buta Dorel
Fensin Saryu
Hoyt Jeffrey J.
Karma Alain
No associations
LandOfFree
Structural disjoining potential for grain boundary premelting and grain coalescence from molecular-dynamics simulations does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Structural disjoining potential for grain boundary premelting and grain coalescence from molecular-dynamics simulations, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Structural disjoining potential for grain boundary premelting and grain coalescence from molecular-dynamics simulations will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-539508