Physics – Condensed Matter – Strongly Correlated Electrons
Scientific paper
2011-02-23
Physics
Condensed Matter
Strongly Correlated Electrons
3 tables and 10 figures; accepted in Phys. Rev. B
Scientific paper
The semiconductor-insulator phase transition of the single-layer manganite La0.5Sr1.5MnO4 has been studied by means of high resolution synchrotron x-ray powder diffraction and resonant x-ray scattering at the Mn K edge. We conclude that a concomitant structural transition from tetragonal I4/mmm to orthorhombic Cmcm phases drives this electronic transition. A detailed symmetry-mode analysis reveals that condensation of three soft modes -Delta_2(B2u), X1+(B2u) and X1+(A)- acting on the oxygen atoms accounts for the structural transformation. The Delta_2 mode leads to a pseudo Jahn-Teller distortion (in the orthorhombic bc-plane only) on one Mn site (Mn1) whereas the two X1+ modes produce an overall contraction of the other Mn site (Mn2) and expansion of the Mn1 one. The X1+ modes are responsible for the tetragonal superlattice (1/2,1/2,0)-type reflections in agreement with a checkerboard ordering of two different Mn sites. A strong enhancement of the scattered intensity has been observed for these superlattice reflections close to the Mn K edge, which could be ascribed to some degree of charge disproportion between the two Mn sites of about 0.15 electrons. We also found that the local geometrical anisotropy of the Mn1 atoms and its ordering originated by the condensed Delta_2 mode alone perfectly explains the resonant scattering of forbidden (1/4,1/4,0)-type reflections without invoking any orbital ordering.
Blasco Javier
Garcia Javier
Herrero-Martin Javier
Mazzoli Claudio
Subías Gloria
No associations
LandOfFree
Structural changes at the semiconductor-insulator phase transition in the single layered La0.5Sr1.5MnO4 perovskite does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Structural changes at the semiconductor-insulator phase transition in the single layered La0.5Sr1.5MnO4 perovskite, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Structural changes at the semiconductor-insulator phase transition in the single layered La0.5Sr1.5MnO4 perovskite will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-175241