Skyrme and Wigner crystals in graphene

Physics – Condensed Matter – Mesoscale and Nanoscale Physics

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

14 pages with 11 figures

Scientific paper

10.1103/PhysRevB.78.085309

At low-energy, the band structure of graphene can be approximated by two degenerate valleys $(K,K^{\prime})$ about which the electronic spectra of the valence and conduction bands have linear dispersion relations. An electronic state in this band spectrum is a linear superposition of states from the $A$ and $B$ sublattices of the honeycomb lattice of graphene. In a quantizing magnetic field, the band spectrum is split into Landau levels with level N=0 having zero weight on the $B(A)$ sublattice for the $% K(K^{\prime})$ valley. Treating the valley index as a pseudospin and assuming the real spins to be fully polarized, we compute the energy of Wigner and Skyrme crystals in the Hartree-Fock approximation. We show that Skyrme crystals have lower energy than Wigner crystals \textit{i.e.} crystals with no pseudospin texture in some range of filling factor $\nu $ around integer fillings. The collective mode spectrum of the valley-skyrmion crystal has three linearly-dispersing Goldstone modes in addition to the usual phonon mode while a Wigner crystal has only one extra Goldstone mode with a quadratic dispersion. We comment on how these modes should be affected by disorder and how, in principle, a microwave absorption experiment could distinguish between Wigner and Skyrme crystals.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Skyrme and Wigner crystals in graphene does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Skyrme and Wigner crystals in graphene, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Skyrme and Wigner crystals in graphene will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-195858

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.