Physics – Condensed Matter – Statistical Mechanics
Scientific paper
2010-09-24
Physics
Condensed Matter
Statistical Mechanics
15 pages, 15 figures; References added
Scientific paper
Anomalous diffusion has been widely observed by single particle tracking microscopy in complex systems such as biological cells. The resulting time series are usually evaluated in terms of time averages. Often anomalous diffusion is connected with non-ergodic behaviour. In such cases the time averages remain random variables and hence irreproducible. Here we present a detailed analysis of the time averaged mean squared displacement for systems governed by anomalous diffusion, considering both unconfined and restricted (corralled) motion. We discuss the behaviour of the time averaged mean squared displacement for two prominent stochastic processes, namely, continuous time random walks and fractional Brownian motion. We also study the distribution of the time averaged mean squared displacement around its ensemble mean, and show that this distribution preserves typical process characteristic even for short time series. Recently, velocity correlation functions were suggested to distinguish between these processes. We here present analytucal expressions for the velocity correlation functions. Knowledge of the results presented here are expected to be relevant for the correct interpretation of single particle trajectory data in complex systems.
Barkai Eli
Burov Stas
Jeon Jae-Hyung
Metzler Ralf
No associations
LandOfFree
Single particle tracking in systems showing anomalous diffusion: the role of weak ergodicity breaking does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Single particle tracking in systems showing anomalous diffusion: the role of weak ergodicity breaking, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Single particle tracking in systems showing anomalous diffusion: the role of weak ergodicity breaking will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-274485