Scaling Relations for Contour Lines of Rough Surfaces

Physics – Condensed Matter – Statistical Mechanics

Scientific paper

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

17 pages, 5 figures, accepted for PRE

Scientific paper

Equilibrium and non-equilibrium growth phenomena, e.g., surface growth, generically yields self-affine distributions. Analysis of statistical properties of these distributions appears essential in understanding statistical mechanics of underlying phenomena. Here, we analyze scaling properties of the cumulative distribution of iso-height loops (i.e., contour lines) of rough self-affine surfaces in terms of loop area and system size. Inspired by the Coulomb gas methods, we find the generating function of the area of the loops. Interestingly, we find that, after sorting loops with respect to their perimeters, Zipf-like scaling relations hold for ranked loops. Numerical simulations are also provided in order to demonstrate the proposed scaling relations.

No associations

LandOfFree

Say what you really think

Search LandOfFree.com for scientists and scientific papers. Rate them and share your experience with other people.

Rating

Scaling Relations for Contour Lines of Rough Surfaces does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.

If you have personal experience with Scaling Relations for Contour Lines of Rough Surfaces, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Scaling Relations for Contour Lines of Rough Surfaces will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFWR-SCP-O-187663

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.