Physics – Condensed Matter – Statistical Mechanics
Scientific paper
2000-04-10
Physics
Condensed Matter
Statistical Mechanics
13 pages, TeX; 4 postscript figures. Submitted to J Phys A
Scientific paper
10.1088/0305-4470/33/47/305
The spatial distribution of persistent spins at zero-temperature in the pure two-dimensional Ising model is investigated numerically. A persistence correlation length, $\xi (t)\sim t^Z$ is identified such that for length scales $r<<\xi (t)$ the persistent spins form a fractal with dimension $d_f$; for length scales $r>>\xi (t)$ the distribution of persistent spins is homogeneous. The zero-temperature persistence exponent, $\theta$, is found to satisfy the scaling relation $\theta = Z(2-d_f)$ with $\theta =0.209\pm 0.002, Z=1/2$ and $d_f\sim 1.58$.
Flynn H.
Jain Sanjay
No associations
LandOfFree
Scaling and Persistence in the Two-Dimensional Ising Model does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Scaling and Persistence in the Two-Dimensional Ising Model, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Scaling and Persistence in the Two-Dimensional Ising Model will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-139618