Physics – Condensed Matter – Strongly Correlated Electrons
Scientific paper
1999-08-31
Physics
Condensed Matter
Strongly Correlated Electrons
16 pages, RevTeX, 16 eps figures
Scientific paper
10.1103/PhysRevB.61.7364
Salmhofer [Commun. Math. Phys. 194, 249 (1998)] has recently developed a new renormalization group method for interacting Fermi systems, where the complete flow from the bare action of a microscopic model to the effective low-energy action, as a function of a continuously decreasing infrared cutoff, is given by a differential flow equation which is local in the flow parameter. We apply this approach to the repulsive two-dimensional Hubbard model with nearest and next-nearest neighbor hopping amplitudes. The flow equation for the effective interaction is evaluated numerically on 1-loop level. The effective interactions diverge at a finite energy scale which is exponentially small for small bare interactions. To analyze the nature of the instabilities signalled by the diverging interactions we extend Salmhofers renormalization group for the calculation of susceptibilities. We compute the singlet superconducting susceptibilities for various pairing symmetries and also charge and spin density susceptibilities. Depending on the choice of the model parameters (hopping amplitudes, interaction strength and band-filling) we find commensurate and incommensurate antiferromagnetic instabilities or d-wave superconductivity as leading instability. We present the resulting phase diagram in the vicinity of half-filling and also results for the density dependence of the critical energy scale.
Halboth Christoph J.
Metzner Walter
No associations
LandOfFree
Renormalization group analysis of the 2D Hubbard model does not yet have a rating. At this time, there are no reviews or comments for this scientific paper.
If you have personal experience with Renormalization group analysis of the 2D Hubbard model, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Renormalization group analysis of the 2D Hubbard model will most certainly appreciate the feedback.
Profile ID: LFWR-SCP-O-499154